Admission

Faculté des arts et des sciences

Maîtrise en mathématiques
Structure du programme

Consulter la description du programme

Cycles supérieurs 2-190-1-0

Liste des cours

Titre officiel Maîtrise en mathématiques (M. Sc.)
Type Maîtrise ès sciences (M. Sc.)
Numéro 2-190-1-0

Version 09 (A20)

La maîtrise comporte 45 crédits. Elle est offerte avec les options suivantes :

- l'option Mathématiques pures, cheminement avec mémoire (segment 70),

- l'option Mathématiques appliquées, cheminement avec mémoire (segment 71),

- l'option Actuariat, cheminement avec mémoire ou avec stage (segment 73).

Outre les 45 crédits, jusqu'à 9 crédits de cours complémentaires peuvent être imposés à l'étudiant, soit pour parfaire ses connaissances de base en mathématiques, statistique ou informatique, soit pour l'initier à un domaine d'application particulier.

Le département s'attend à ce que l'étudiant participe régulièrement, et ce tout au long de ses études, au séminaire des étudiants de 2e et 3e cycles de mathématiques.

Lire la suite

Segment 70 - Propre à l'option Mathématiques pures

Les crédits de l'option sont répartis de la façon suivante:

29 crédits obligatoires attribués à la recherche, de 12 à 16 crédits à option et un maximum de 4 crédits au choix.

Au moins 3 crédits de cours de niveau des études supérieures dans trois des domaines suivants : algèbre, analyse, théorie des nombres, topologie, géométrie, probabilités.

Bloc 70A Mathématiques

Option - Minimum 12 crédits, maximum 16 crédits.

MAT 6117 Mesure et intégration

Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.

Horaire de jour 4.0 Crédits

MAT 6124 Analyse fonctionnelle

Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.

Horaire de jour 4.0 Crédits

MAT 6125 Analyse fonctionnelle avancée

Espaces de Sobolev. Algèbres de Banach, théorème de Gelfand. Théories spectrales d’opérateurs bornés. Opérateurs non bornés, transformée de Cayley.

4.0 Crédits

MAT 6129A Analyse: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6139A Analyse complexe: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6215 Systèmes dynamiques

Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications modernes.

Horaire de jour 4.0 Crédits

MAT 6220 Équations aux dérivées partielles

Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.

4.0 Crédits

MAT 6229A Équations aux dérivées partielles : sujets divers

Ce cours est publié sans description.

4.0 Crédits

MAT 6230 Analyse géométrique

Le laplacien et la théorie elliptique. La géométrie spectrale. Surfaces minimales. Applications analytiques à la géométrie riemannienne, symplectique et kahlerienne, et en physique et sciences informatiques.

4.0 Crédits

MAT 6330 Géométrie différentielle

Variétés différentiables, formes différentielles, fibrés. Partitions de l’unité. Groupes à un paramètre de difféomorphismes, dérivée et crochet de Lie. Intégration et théorème de Stokes. Cohomologie de De Rham. Éléments de géométrie riemannienne.

Horaire de jour 4.0 Crédits

MAT 6335 Géométrie riemannienne

Métriques riemanniennes. Connexions. Courbure. Transport parallèle. Géodésiques. Champs de Jacobi. Théorèmes de Hopf-Rinow et Cartan-Hadamard. Théorèmes de comparaison. Théorème de Bonnet-Myers. Laplacien. Groupes de Lie. Espaces symétriques.

4.0 Crédits

MAT 6339A Géométrie: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6350 Topologie différentielle

Variétés, transversalité et degré. Théorème de Sard. Éléments de la théorie de Morse. Complexe de Morse. Théorème de Hopf-Poincaré. Cobordisme. Signature. Théorème de h-cobordisme. Classes caractéristiques. Espaces de Thom, groupes de cobordisme.

4.0 Crédits

MAT 6354 Topologie algébrique

Homologie et co-homologie singulières. Fibrations, co-fibrations. Groupes d’homotopie. CW-complexes. Obstructions. Suites spectrales. Produits. Dualité de Poincaré. Théorème du point fixe de Lefschetz. Groupes unitaires et classes de Chern.

4.0 Crédits

MAT 6359A Topologie: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6461 Génétique mathématique et biologie des systèmes

Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.

4.0 Crédits

MAT 6463 Mathématiques biologiques

Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.

Horaire de jour 4.0 Crédits

MAT 6465 Modélisation mathématique et applications

Processus de modélisation mathématiques avancés: simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.

Horaire de jour 4.0 Crédits

MAT 6467 Neuroscience mathématique

Analyse mathématique et simulation de systèmes neuraux (neurones, réseaux et populations) utilisant des outils de systèmes dynamiques. Procédés stochastiques, et autres techniques.

4.0 Crédits

MAT 6473 Calcul scientifique

Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Gestion de données. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.

Horaire de jour 4.0 Crédits

MAT 6475 Mécanique des fluides

Équations d’Euler. Rotation et tourbillon. Écoulements potentiels. Aérodynamique. Équations de Navier-Stokes. Écoulements très visqueux. Couches limites. Sujets spéciaux.

4.0 Crédits

MAT 6476 Méthodes numériques pour EDP

Équations paraboliques, différences finies. Convergence, stabilité. Méthodes implicites, directions alternées. Syst. hyperbol. Onde de choc, méth. amont, de Lax-Friedrichs, Lax-Wendroff, van Leer, Godunov, Roe, volumes finis.

4.0 Crédits

MAT 6493 Analyse géométrique de données

Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.

Horaire de jour 4.0 Crédits

MAT 6495 Théorie spectrale des graphes

Représentation et analyse des graphes par la décomposition spectrale des matrices dérivées de leurs topologies. Analyse harmonique sur les graphes. Applications au traitement de signal sur les graphes et à l’apprentissage profond géométrique.

4.0 Crédits

MAT 6620 Algèbre commutative

Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.

Horaire de jour 4.0 Crédits

MAT 6621 Théorie de la représentation des groupes

Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.

4.0 Crédits

MAT 6623 Théorie des groupes de Lie

Algèbre de Lie d’un groupe de Lie. Formes de Maurer-Cartan. Théorèmes de Lie. Application exponentielle, coordonnées canoniques. Sous-groupes fermés. Sous-groupes connexes par arcs. Formes de Killing et les groupes semi-simples.

4.0 Crédits

MAT 6629A Algèbre: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6650 Théorie algébrique des nombres

Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.

4.0 Crédits

MAT 6652 Distribution des nombres premiers

Distribution des nombres premiers. Fonction zêta de Riemann et fonctions-L de Dirichlet. Le théorème des nombres premiers, et de Bombieri-Vinogradov. La répartition des nombres premiers consécutifs.

Horaire de jour 4.0 Crédits

MAT 6654 Courbes elliptiques et formes modulaires

Groupe des points d’une courbe elliptique. Théorème de Mordell-Weil. Groupes de Selmer et de Tate-Shafarevich. Les expansions de Fourier des formes modulaires et l’idée de modularité. Applications aux équations diophantiennes.

Horaire de jour 4.0 Crédits

MAT 6657 Combinatoire additive

Théorème de Freiman-Ruzsa, transformation de Dyson, théorèmes de Van der Waerden et de Roth-Szemeredi-Gowers. Théorème de Bourgain sur les bornes de sommes exponentielles. Théorème de Green-Tao.

4.0 Crédits

MAT 6659A Théorie des nombres: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6701 Probabilités

Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.

Horaire de jour 4.0 Crédits

MAT 6703 Calcul stochastique

Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.

Horaire de jour 4.0 Crédits

MAT 6709A Probabilités: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

Bloc 70B Complément de formation et cours d'autres disciplines ou hors UdeM

Choix - Maximum 4 crédits.
Cours de cycle supérieurs d'autres disciplines ou d'autres universités ou cours de 1er cycle de sigle MAT de 2e ou 3e année avec l'approbation du responsable de programme.

Bloc 70C Recherche et mémoire

Obligatoire - 29 crédits.

MAT 6916 Mémoire

Cours publié sans description.

29.0 Crédits

Segment 71 - Propre à l'option Mathématiques appliquées

Les crédits de l'option sont répartis de la façon suivante:

29 crédits obligatoires attribués à la recherche, de 10 à 16 crédits à option et un maximum de 6 crédits au choix.

Au moins 3 crédits de cours de niveau des études supérieures dans trois des domaines suivants : algèbre, analyse, analyse numérique, équations différentielles, probabilités, biomathématiques, science des données.

Bloc 71A Mathématiques et sciences des données

Option - Minimum 10 crédits, maximum 16 crédits.

ACT 6230 Finance mathématique

Structures à terme, processus stochastiques, modèles et produits dérivés de taux d'intérêt, immunisation et appariement, produits dérivés de crédit, titres adossés à des créances hypothécaires, volatilité.

Horaire de jour 3.0 Crédits

ACT 6240 Laboratoire de modélisation de données financières

Analyse et extraction d’informations à partir de données du marché, données volumineuses et à haute fréquence, techniques d’apprentissage statistique en finance, résolution de problèmes pratiques.

3.0 Crédits

ACT 6245 Méthodes computationnelles en finance

Tarification et couverture dans des modèles avec une volatilité ou un taux d’intérêt stochastique, simulation de Monte Carlo pour les équations différentielles stochastiques, résolution d’équations à dérivées partielles.

3.0 Crédits

ACT 6275 Modèles à chaîne de Markov cachée en finance

Modèles à chaîne de Markov cachée, modèles à espace d’état, techniques de filtrage et de lissage, filtre d’Hamilton, filtre de Kalman, méthodes de Monte Carlo séquentielles, algorithme EM, applications financières.

3.0 Crédits

ACT 6280 Actuariat: sujets spéciaux

3.0 Crédits

MAT 6117 Mesure et intégration

Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.

Horaire de jour 4.0 Crédits

MAT 6124 Analyse fonctionnelle

Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.

Horaire de jour 4.0 Crédits

MAT 6125 Analyse fonctionnelle avancée

Espaces de Sobolev. Algèbres de Banach, théorème de Gelfand. Théories spectrales d’opérateurs bornés. Opérateurs non bornés, transformée de Cayley.

4.0 Crédits

MAT 6129A Analyse: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6139A Analyse complexe: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6215 Systèmes dynamiques

Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications modernes.

Horaire de jour 4.0 Crédits

MAT 6220 Équations aux dérivées partielles

Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.

4.0 Crédits

MAT 6229A Équations aux dérivées partielles : sujets divers

Ce cours est publié sans description.

4.0 Crédits

MAT 6230 Analyse géométrique

Le laplacien et la théorie elliptique. La géométrie spectrale. Surfaces minimales. Applications analytiques à la géométrie riemannienne, symplectique et kahlerienne, et en physique et sciences informatiques.

4.0 Crédits

MAT 6330 Géométrie différentielle

Variétés différentiables, formes différentielles, fibrés. Partitions de l’unité. Groupes à un paramètre de difféomorphismes, dérivée et crochet de Lie. Intégration et théorème de Stokes. Cohomologie de De Rham. Éléments de géométrie riemannienne.

Horaire de jour 4.0 Crédits

MAT 6335 Géométrie riemannienne

Métriques riemanniennes. Connexions. Courbure. Transport parallèle. Géodésiques. Champs de Jacobi. Théorèmes de Hopf-Rinow et Cartan-Hadamard. Théorèmes de comparaison. Théorème de Bonnet-Myers. Laplacien. Groupes de Lie. Espaces symétriques.

4.0 Crédits

MAT 6339A Géométrie: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6350 Topologie différentielle

Variétés, transversalité et degré. Théorème de Sard. Éléments de la théorie de Morse. Complexe de Morse. Théorème de Hopf-Poincaré. Cobordisme. Signature. Théorème de h-cobordisme. Classes caractéristiques. Espaces de Thom, groupes de cobordisme.

4.0 Crédits

MAT 6354 Topologie algébrique

Homologie et co-homologie singulières. Fibrations, co-fibrations. Groupes d’homotopie. CW-complexes. Obstructions. Suites spectrales. Produits. Dualité de Poincaré. Théorème du point fixe de Lefschetz. Groupes unitaires et classes de Chern.

4.0 Crédits

MAT 6359A Topologie: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6461 Génétique mathématique et biologie des systèmes

Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.

4.0 Crédits

MAT 6463 Mathématiques biologiques

Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.

Horaire de jour 4.0 Crédits

MAT 6465 Modélisation mathématique et applications

Processus de modélisation mathématiques avancés: simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.

Horaire de jour 4.0 Crédits

MAT 6467 Neuroscience mathématique

Analyse mathématique et simulation de systèmes neuraux (neurones, réseaux et populations) utilisant des outils de systèmes dynamiques. Procédés stochastiques, et autres techniques.

4.0 Crédits

MAT 6473 Calcul scientifique

Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Gestion de données. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.

Horaire de jour 4.0 Crédits

MAT 6475 Mécanique des fluides

Équations d’Euler. Rotation et tourbillon. Écoulements potentiels. Aérodynamique. Équations de Navier-Stokes. Écoulements très visqueux. Couches limites. Sujets spéciaux.

4.0 Crédits

MAT 6476 Méthodes numériques pour EDP

Équations paraboliques, différences finies. Convergence, stabilité. Méthodes implicites, directions alternées. Syst. hyperbol. Onde de choc, méth. amont, de Lax-Friedrichs, Lax-Wendroff, van Leer, Godunov, Roe, volumes finis.

4.0 Crédits

MAT 6493 Analyse géométrique de données

Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.

Horaire de jour 4.0 Crédits

MAT 6495 Théorie spectrale des graphes

Représentation et analyse des graphes par la décomposition spectrale des matrices dérivées de leurs topologies. Analyse harmonique sur les graphes. Applications au traitement de signal sur les graphes et à l’apprentissage profond géométrique.

4.0 Crédits

MAT 6620 Algèbre commutative

Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.

Horaire de jour 4.0 Crédits

MAT 6621 Théorie de la représentation des groupes

Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.

4.0 Crédits

MAT 6623 Théorie des groupes de Lie

Algèbre de Lie d’un groupe de Lie. Formes de Maurer-Cartan. Théorèmes de Lie. Application exponentielle, coordonnées canoniques. Sous-groupes fermés. Sous-groupes connexes par arcs. Formes de Killing et les groupes semi-simples.

4.0 Crédits

MAT 6629A Algèbre: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6650 Théorie algébrique des nombres

Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.

4.0 Crédits

MAT 6652 Distribution des nombres premiers

Distribution des nombres premiers. Fonction zêta de Riemann et fonctions-L de Dirichlet. Le théorème des nombres premiers, et de Bombieri-Vinogradov. La répartition des nombres premiers consécutifs.

Horaire de jour 4.0 Crédits

MAT 6654 Courbes elliptiques et formes modulaires

Groupe des points d’une courbe elliptique. Théorème de Mordell-Weil. Groupes de Selmer et de Tate-Shafarevich. Les expansions de Fourier des formes modulaires et l’idée de modularité. Applications aux équations diophantiennes.

Horaire de jour 4.0 Crédits

MAT 6657 Combinatoire additive

Théorème de Freiman-Ruzsa, transformation de Dyson, théorèmes de Van der Waerden et de Roth-Szemeredi-Gowers. Théorème de Bourgain sur les bornes de sommes exponentielles. Théorème de Green-Tao.

4.0 Crédits

MAT 6659A Théorie des nombres: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6701 Probabilités

Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.

Horaire de jour 4.0 Crédits

MAT 6703 Calcul stochastique

Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.

Horaire de jour 4.0 Crédits

MAT 6709A Probabilités: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

STT 6005 Théorie de l'échantillonnage

Sondages avec probabilités inégales, stratifiés, en grappes, à plusieurs degrés et plusieurs phases. Estimation par la régression généralisée et calage. Estimation selon le plan et selon le modèle. Non-réponse. Estimation de la variance.

3.0 Crédits

STT 6215 Méthodes de statistique bayésienne

Principes de l’analyse bayésienne; loi a priori et a posteriori, inférence statistique et théorie de la décision. Méthodes computationnelles; méthodes de Monte Carlo par chaînes de Markov et méthodes variationnelles. Applications.

Horaire de jour 3.0 Crédits

STT 6230 Méthodes non paramétriques avancées

Statistiques linéaires de rang. Problèmes de position et de dispersion. Cas d'un ou deux échantillons. Efficacité relative des tests. Régression non paramétrique : méthodes du noyau et splines de lissage. Tests de permutation et méthode bootstrap.

3.0 Crédits

STT 6300 Méthodes asymptotiques

Notions de probabilités. Inférence non paramétrique; comportement asymptotique des moments, quantiles échantillonnaux et des statistiques d’ordre. Inférence paramétrique fréquentiste et bayésienne; consistance uniforme, normalité asymptotique.

3.0 Crédits

STT 6410 Analyse de la variance

Cas de deux traitements. Modèle basé sur la randomisation. Théorie des formes quadratiques. Estimation et tests d’hypothèses dans les modèles linéaires. Tests de permutation du plan à un facteur. Blocs incomplets. Plans factoriels fractionnaires.

3.0 Crédits

STT 6415 Régression

Rappels sur les modèles linéaires généralisés (inférence, tests, validation, choix de modèle). Géométrie de la régression. Étude asymptotique des estimateurs et réduction de variance. Régression robuste. Régression non paramétrique.

Horaire de jour 3.0 Crédits

STT 6515 Analyse de données multivariées

Distributions elliptiques. Estimateurs de localisation et dispersion. Estimateur robuste. Corrélations multiple, partielle, canonique. Tests paramétriques, de permutation, du bootstrap. Classification. Analyse en composantes principales. Prévision.

3.0 Crédits

STT 6516 Données catégorielles

Tableaux de contingence à plusieurs dimensions. Mesures d'association. Risque relatif, rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson, multinomiale, logistique cumulative. Modèles log-linéaires. Modèles graphiques.

Horaire de jour 3.0 Crédits

STT 6615 Séries chronologiques

Techniques descriptives. Processus stationnaires. Meilleure prévision linéaire. Modèles ARMA, ARIMA et modèles saisonniers. Estimation et prévision dans les ARMA. Éléments d’analyse spectrale. Modèles ARCH et GARCH.

Horaire de jour 3.0 Crédits

STT 6700 Inférence statistique

Principes d'inférence : estimation ponctuelle, distribution des estimateurs, test d’hypothèse, région de confiance. Approche bayésienne. Méthodes de rééchantillonnage. Estimation non paramétrique. Applications modernes de la statistique.

Horaire de jour 3.0 Crédits

STT 6705V Statistique: sujets spéciaux

3.0 Crédits

Bloc 71B Complément de formation et cours d'autres disciplines ou hors UdeM

Choix - Maximum 6 crédits.
Cours de cycles supérieurs d'autres disciplines ou d'autres universités et/ou cours de 1er cycle de sigle MAT de 2e ou 3e année avec l'approbation du responsable de programme.

Bloc 71C Recherche et mémoire

Obligatoire - 29 crédits.

MAT 6916 Mémoire

Cours publié sans description.

29.0 Crédits

Segment 73 - Propre à l'option Actuariat

Les crédits de l'option sont répartis de la façon suivante:

- cheminement avec mémoire (MM) : 29 crédits obligatoires attribués à la recherche, de 10 à 16 crédits à option et un maximum de 6 crédits au choix.

- cheminement avec stage (S) : 21 crédits obligatoires attribués à un stage, de 15 à 24 crédits à option et un maximum de 9 crédits au choix.

MM-Bloc 73A Cheminement avec mémoire

Option - Minimum 10 crédits, maximum 16 crédits.

ACT 6230 Finance mathématique

Structures à terme, processus stochastiques, modèles et produits dérivés de taux d'intérêt, immunisation et appariement, produits dérivés de crédit, titres adossés à des créances hypothécaires, volatilité.

Horaire de jour 3.0 Crédits

ACT 6240 Laboratoire de modélisation de données financières

Analyse et extraction d’informations à partir de données du marché, données volumineuses et à haute fréquence, techniques d’apprentissage statistique en finance, résolution de problèmes pratiques.

3.0 Crédits

ACT 6245 Méthodes computationnelles en finance

Tarification et couverture dans des modèles avec une volatilité ou un taux d’intérêt stochastique, simulation de Monte Carlo pour les équations différentielles stochastiques, résolution d’équations à dérivées partielles.

3.0 Crédits

ACT 6275 Modèles à chaîne de Markov cachée en finance

Modèles à chaîne de Markov cachée, modèles à espace d’état, techniques de filtrage et de lissage, filtre d’Hamilton, filtre de Kalman, méthodes de Monte Carlo séquentielles, algorithme EM, applications financières.

3.0 Crédits

ACT 6280 Actuariat: sujets spéciaux

3.0 Crédits

MAT 6117 Mesure et intégration

Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.

Horaire de jour 4.0 Crédits

MAT 6124 Analyse fonctionnelle

Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.

Horaire de jour 4.0 Crédits

MAT 6129A Analyse: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6215 Systèmes dynamiques

Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications modernes.

Horaire de jour 4.0 Crédits

MAT 6220 Équations aux dérivées partielles

Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.

4.0 Crédits

MAT 6461 Génétique mathématique et biologie des systèmes

Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.

4.0 Crédits

MAT 6463 Mathématiques biologiques

Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.

Horaire de jour 4.0 Crédits

MAT 6465 Modélisation mathématique et applications

Processus de modélisation mathématiques avancés: simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.

Horaire de jour 4.0 Crédits

MAT 6467 Neuroscience mathématique

Analyse mathématique et simulation de systèmes neuraux (neurones, réseaux et populations) utilisant des outils de systèmes dynamiques. Procédés stochastiques, et autres techniques.

4.0 Crédits

MAT 6473 Calcul scientifique

Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Gestion de données. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.

Horaire de jour 4.0 Crédits

MAT 6493 Analyse géométrique de données

Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.

Horaire de jour 4.0 Crédits

MAT 6495 Théorie spectrale des graphes

Représentation et analyse des graphes par la décomposition spectrale des matrices dérivées de leurs topologies. Analyse harmonique sur les graphes. Applications au traitement de signal sur les graphes et à l’apprentissage profond géométrique.

4.0 Crédits

MAT 6620 Algèbre commutative

Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.

Horaire de jour 4.0 Crédits

MAT 6621 Théorie de la représentation des groupes

Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.

4.0 Crédits

MAT 6650 Théorie algébrique des nombres

Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.

4.0 Crédits

MAT 6701 Probabilités

Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.

Horaire de jour 4.0 Crédits

MAT 6703 Calcul stochastique

Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.

Horaire de jour 4.0 Crédits

MAT 6709A Probabilités: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

STT 6005 Théorie de l'échantillonnage

Sondages avec probabilités inégales, stratifiés, en grappes, à plusieurs degrés et plusieurs phases. Estimation par la régression généralisée et calage. Estimation selon le plan et selon le modèle. Non-réponse. Estimation de la variance.

3.0 Crédits

STT 6215 Méthodes de statistique bayésienne

Principes de l’analyse bayésienne; loi a priori et a posteriori, inférence statistique et théorie de la décision. Méthodes computationnelles; méthodes de Monte Carlo par chaînes de Markov et méthodes variationnelles. Applications.

Horaire de jour 3.0 Crédits

STT 6230 Méthodes non paramétriques avancées

Statistiques linéaires de rang. Problèmes de position et de dispersion. Cas d'un ou deux échantillons. Efficacité relative des tests. Régression non paramétrique : méthodes du noyau et splines de lissage. Tests de permutation et méthode bootstrap.

3.0 Crédits

STT 6300 Méthodes asymptotiques

Notions de probabilités. Inférence non paramétrique; comportement asymptotique des moments, quantiles échantillonnaux et des statistiques d’ordre. Inférence paramétrique fréquentiste et bayésienne; consistance uniforme, normalité asymptotique.

3.0 Crédits

STT 6410 Analyse de la variance

Cas de deux traitements. Modèle basé sur la randomisation. Théorie des formes quadratiques. Estimation et tests d’hypothèses dans les modèles linéaires. Tests de permutation du plan à un facteur. Blocs incomplets. Plans factoriels fractionnaires.

3.0 Crédits

STT 6415 Régression

Rappels sur les modèles linéaires généralisés (inférence, tests, validation, choix de modèle). Géométrie de la régression. Étude asymptotique des estimateurs et réduction de variance. Régression robuste. Régression non paramétrique.

Horaire de jour 3.0 Crédits

STT 6515 Analyse de données multivariées

Distributions elliptiques. Estimateurs de localisation et dispersion. Estimateur robuste. Corrélations multiple, partielle, canonique. Tests paramétriques, de permutation, du bootstrap. Classification. Analyse en composantes principales. Prévision.

3.0 Crédits

STT 6516 Données catégorielles

Tableaux de contingence à plusieurs dimensions. Mesures d'association. Risque relatif, rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson, multinomiale, logistique cumulative. Modèles log-linéaires. Modèles graphiques.

Horaire de jour 3.0 Crédits

STT 6615 Séries chronologiques

Techniques descriptives. Processus stationnaires. Meilleure prévision linéaire. Modèles ARMA, ARIMA et modèles saisonniers. Estimation et prévision dans les ARMA. Éléments d’analyse spectrale. Modèles ARCH et GARCH.

Horaire de jour 3.0 Crédits

STT 6700 Inférence statistique

Principes d'inférence : estimation ponctuelle, distribution des estimateurs, test d’hypothèse, région de confiance. Approche bayésienne. Méthodes de rééchantillonnage. Estimation non paramétrique. Applications modernes de la statistique.

Horaire de jour 3.0 Crédits

STT 6705V Statistique: sujets spéciaux

3.0 Crédits

MM-Bloc 73B Complément de formation et cours d'autres disciplines ou hors UdeM

Choix - Maximum 6 crédits.
Cours de cycle supérieurs d'autres disciplines ou d'autres universités et/ou cours de 1er cycle de sigle ACT, MAT ou STT et de 2e ou 3e année avec l'approbation du responsable de programme.

MM-Bloc 73C Recherche et mémoire

Obligatoire - 29 crédits.

MAT 6916 Mémoire

Cours publié sans description.

29.0 Crédits

S-Bloc 73A Cheminement avec stage

Option - minimum 15 crédits, maximum 24 crédits.

ACT 6230 Finance mathématique

Structures à terme, processus stochastiques, modèles et produits dérivés de taux d'intérêt, immunisation et appariement, produits dérivés de crédit, titres adossés à des créances hypothécaires, volatilité.

Horaire de jour 3.0 Crédits

ACT 6240 Laboratoire de modélisation de données financières

Analyse et extraction d’informations à partir de données du marché, données volumineuses et à haute fréquence, techniques d’apprentissage statistique en finance, résolution de problèmes pratiques.

3.0 Crédits

ACT 6245 Méthodes computationnelles en finance

Tarification et couverture dans des modèles avec une volatilité ou un taux d’intérêt stochastique, simulation de Monte Carlo pour les équations différentielles stochastiques, résolution d’équations à dérivées partielles.

3.0 Crédits

ACT 6275 Modèles à chaîne de Markov cachée en finance

Modèles à chaîne de Markov cachée, modèles à espace d’état, techniques de filtrage et de lissage, filtre d’Hamilton, filtre de Kalman, méthodes de Monte Carlo séquentielles, algorithme EM, applications financières.

3.0 Crédits

ACT 6280 Actuariat: sujets spéciaux

3.0 Crédits

MAT 6117 Mesure et intégration

Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.

Horaire de jour 4.0 Crédits

MAT 6124 Analyse fonctionnelle

Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.

Horaire de jour 4.0 Crédits

MAT 6129A Analyse: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

MAT 6215 Systèmes dynamiques

Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications modernes.

Horaire de jour 4.0 Crédits

MAT 6220 Équations aux dérivées partielles

Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.

4.0 Crédits

MAT 6461 Génétique mathématique et biologie des systèmes

Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.

4.0 Crédits

MAT 6463 Mathématiques biologiques

Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.

Horaire de jour 4.0 Crédits

MAT 6465 Modélisation mathématique et applications

Processus de modélisation mathématiques avancés: simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.

Horaire de jour 4.0 Crédits

MAT 6467 Neuroscience mathématique

Analyse mathématique et simulation de systèmes neuraux (neurones, réseaux et populations) utilisant des outils de systèmes dynamiques. Procédés stochastiques, et autres techniques.

4.0 Crédits

MAT 6473 Calcul scientifique

Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Gestion de données. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.

Horaire de jour 4.0 Crédits

MAT 6493 Analyse géométrique de données

Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.

Horaire de jour 4.0 Crédits

MAT 6495 Théorie spectrale des graphes

Représentation et analyse des graphes par la décomposition spectrale des matrices dérivées de leurs topologies. Analyse harmonique sur les graphes. Applications au traitement de signal sur les graphes et à l’apprentissage profond géométrique.

4.0 Crédits

MAT 6620 Algèbre commutative

Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.

Horaire de jour 4.0 Crédits

MAT 6621 Théorie de la représentation des groupes

Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.

4.0 Crédits

MAT 6650 Théorie algébrique des nombres

Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.

4.0 Crédits

MAT 6701 Probabilités

Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.

Horaire de jour 4.0 Crédits

MAT 6703 Calcul stochastique

Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.

Horaire de jour 4.0 Crédits

MAT 6709A Probabilités: sujets spéciaux

Ce cours est publié sans description.

4.0 Crédits

STT 6005 Théorie de l'échantillonnage

Sondages avec probabilités inégales, stratifiés, en grappes, à plusieurs degrés et plusieurs phases. Estimation par la régression généralisée et calage. Estimation selon le plan et selon le modèle. Non-réponse. Estimation de la variance.

3.0 Crédits

STT 6230 Méthodes non paramétriques avancées

Statistiques linéaires de rang. Problèmes de position et de dispersion. Cas d'un ou deux échantillons. Efficacité relative des tests. Régression non paramétrique : méthodes du noyau et splines de lissage. Tests de permutation et méthode bootstrap.

3.0 Crédits

STT 6300 Méthodes asymptotiques

Notions de probabilités. Inférence non paramétrique; comportement asymptotique des moments, quantiles échantillonnaux et des statistiques d’ordre. Inférence paramétrique fréquentiste et bayésienne; consistance uniforme, normalité asymptotique.

3.0 Crédits

STT 6410 Analyse de la variance

Cas de deux traitements. Modèle basé sur la randomisation. Théorie des formes quadratiques. Estimation et tests d’hypothèses dans les modèles linéaires. Tests de permutation du plan à un facteur. Blocs incomplets. Plans factoriels fractionnaires.

3.0 Crédits

STT 6415 Régression

Rappels sur les modèles linéaires généralisés (inférence, tests, validation, choix de modèle). Géométrie de la régression. Étude asymptotique des estimateurs et réduction de variance. Régression robuste. Régression non paramétrique.

Horaire de jour 3.0 Crédits

STT 6515 Analyse de données multivariées

Distributions elliptiques. Estimateurs de localisation et dispersion. Estimateur robuste. Corrélations multiple, partielle, canonique. Tests paramétriques, de permutation, du bootstrap. Classification. Analyse en composantes principales. Prévision.

3.0 Crédits

STT 6516 Données catégorielles

Tableaux de contingence à plusieurs dimensions. Mesures d'association. Risque relatif, rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson, multinomiale, logistique cumulative. Modèles log-linéaires. Modèles graphiques.

Horaire de jour 3.0 Crédits

STT 6615 Séries chronologiques

Techniques descriptives. Processus stationnaires. Meilleure prévision linéaire. Modèles ARMA, ARIMA et modèles saisonniers. Estimation et prévision dans les ARMA. Éléments d’analyse spectrale. Modèles ARCH et GARCH.

Horaire de jour 3.0 Crédits

STT 6705V Statistique: sujets spéciaux

3.0 Crédits

S-Bloc 73B Complément de formation et cours d'autres disciplines ou hors UdeM

Choix - Maximum 9 crédits.
Cours de cycles supérieurs d'autres disciplines ou d'autres universités et/ou un maximum de 6 crédits de cours de 1er cycle de sigle ACT, MAT ou STT et de 2e ou 3e année avec l'approbation du responsable de programme.

S-Bloc 73C Stage

Obligatoire - 21 crédits.