Faculté des arts et des sciences
Maîtrise en mathématiques
Structure du programme
Consulter la description du programme
Cycles supérieurs 2-190-1-0
Liste des cours
Titre officiel | Maîtrise en mathématiques (M. Sc.) |
---|---|
Type | Maîtrise ès sciences (M. Sc.) |
Numéro | 2-190-1-0 |
Version 09 (A20)
La maîtrise comporte 45 crédits. Elle est offerte avec les options suivantes :
- l'option Mathématiques pures, cheminement avec mémoire (segment 70),
- l'option Mathématiques appliquées, cheminement avec mémoire (segment 71),
- l'option Actuariat, cheminement avec mémoire ou avec stage (segment 73).
Outre les 45 crédits, jusqu'à 9 crédits de cours complémentaires peuvent être imposés à l'étudiant, soit pour parfaire ses connaissances de base en mathématiques, statistique ou informatique, soit pour l'initier à un domaine d'application particulier.
Le département s'attend à ce que l'étudiant participe régulièrement, et ce tout au long de ses études, au séminaire des étudiants de 2e et 3e cycles de mathématiques.
Segment 70 - Propre à l'option Mathématiques pures
Les crédits de l'option sont répartis de la façon suivante:
29 crédits obligatoires attribués à la recherche, de 12 à 16 crédits à option et un maximum de 4 crédits au choix.
Au moins 3 crédits de cours de niveau des études supérieures dans trois des domaines suivants : algèbre, analyse, théorie des nombres, topologie, géométrie, probabilités.
Bloc 70A Mathématiques
Option - Minimum 12 crédits, maximum 16 crédits.Mesure et intégration
Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.
Analyse fonctionnelle
Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.
Analyse fonctionnelle avancée
Espaces de Sobolev. Algèbres de Banach, théorème de Gelfand. Théories spectrales d’opérateurs bornés. Opérateurs non bornés, transformée de Cayley.
Systèmes dynamiques
Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications modernes.
Équations aux dérivées partielles
Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.
Analyse géométrique
Le laplacien et la théorie elliptique. La géométrie spectrale. Surfaces minimales. Applications analytiques à la géométrie riemannienne, symplectique et kahlerienne, et en physique et sciences informatiques.
Géométrie différentielle
Variétés différentiables, formes différentielles, fibrés. Partitions de l’unité. Groupes à un paramètre de difféomorphismes, dérivée et crochet de Lie. Intégration et théorème de Stokes. Cohomologie de De Rham. Éléments de géométrie riemannienne.
Géométrie riemannienne
Métriques riemanniennes. Connexions. Courbure. Transport parallèle. Géodésiques. Champs de Jacobi. Théorèmes de Hopf-Rinow et Cartan-Hadamard. Théorèmes de comparaison. Théorème de Bonnet-Myers. Laplacien. Groupes de Lie. Espaces symétriques.
Topologie différentielle
Variétés, transversalité et degré. Théorème de Sard. Éléments de la théorie de Morse. Complexe de Morse. Théorème de Hopf-Poincaré. Cobordisme. Signature. Théorème de h-cobordisme. Classes caractéristiques. Espaces de Thom, groupes de cobordisme.
Topologie algébrique
Homologie et co-homologie singulières. Fibrations, co-fibrations. Groupes d’homotopie. CW-complexes. Obstructions. Suites spectrales. Produits. Dualité de Poincaré. Théorème du point fixe de Lefschetz. Groupes unitaires et classes de Chern.
Génétique mathématique et biologie des systèmes
Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.
Mathématiques biologiques
Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.
Modélisation mathématique et applications
Processus de modélisation mathématiques avancés: simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.
Neuroscience mathématique
Analyse mathématique et simulation de systèmes neuraux (neurones, réseaux et populations) utilisant des outils de systèmes dynamiques. Procédés stochastiques, et autres techniques.
Calcul scientifique
Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Gestion de données. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.
Mécanique des fluides
Équations d’Euler. Rotation et tourbillon. Écoulements potentiels. Aérodynamique. Équations de Navier-Stokes. Écoulements très visqueux. Couches limites. Sujets spéciaux.
Méthodes numériques pour EDP
Équations paraboliques, différences finies. Convergence, stabilité. Méthodes implicites, directions alternées. Syst. hyperbol. Onde de choc, méth. amont, de Lax-Friedrichs, Lax-Wendroff, van Leer, Godunov, Roe, volumes finis.
Analyse géométrique de données
Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.
Théorie spectrale des graphes
Représentation et analyse des graphes par la décomposition spectrale des matrices dérivées de leurs topologies. Analyse harmonique sur les graphes. Applications au traitement de signal sur les graphes et à l’apprentissage profond géométrique.
Algèbre commutative
Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.
Théorie de la représentation des groupes
Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.
Théorie des groupes de Lie
Algèbre de Lie d’un groupe de Lie. Formes de Maurer-Cartan. Théorèmes de Lie. Application exponentielle, coordonnées canoniques. Sous-groupes fermés. Sous-groupes connexes par arcs. Formes de Killing et les groupes semi-simples.
Théorie algébrique des nombres
Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.
Distribution des nombres premiers
Distribution des nombres premiers. Fonction zêta de Riemann et fonctions-L de Dirichlet. Le théorème des nombres premiers, et de Bombieri-Vinogradov. La répartition des nombres premiers consécutifs.
Courbes elliptiques et formes modulaires
Groupe des points d’une courbe elliptique. Théorème de Mordell-Weil. Groupes de Selmer et de Tate-Shafarevich. Les expansions de Fourier des formes modulaires et l’idée de modularité. Applications aux équations diophantiennes.
Combinatoire additive
Théorème de Freiman-Ruzsa, transformation de Dyson, théorèmes de Van der Waerden et de Roth-Szemeredi-Gowers. Théorème de Bourgain sur les bornes de sommes exponentielles. Théorème de Green-Tao.
Probabilités
Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.
Calcul stochastique
Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.
Bloc 70B Complément de formation et cours d'autres disciplines ou hors UdeM
Choix - Maximum 4 crédits.Bloc 70C Recherche et mémoire
Obligatoire - 29 crédits.Segment 71 - Propre à l'option Mathématiques appliquées
Les crédits de l'option sont répartis de la façon suivante:
29 crédits obligatoires attribués à la recherche, de 10 à 16 crédits à option et un maximum de 6 crédits au choix.
Au moins 3 crédits de cours de niveau des études supérieures dans trois des domaines suivants : algèbre, analyse, analyse numérique, équations différentielles, probabilités, biomathématiques, science des données.
Bloc 71A Mathématiques et sciences des données
Option - Minimum 10 crédits, maximum 16 crédits.Finance mathématique
Structures à terme, processus stochastiques, modèles et produits dérivés de taux d'intérêt, immunisation et appariement, produits dérivés de crédit, titres adossés à des créances hypothécaires, volatilité.
Laboratoire de modélisation de données financières
Analyse et extraction d’informations à partir de données du marché, données volumineuses et à haute fréquence, techniques d’apprentissage statistique en finance, résolution de problèmes pratiques.
Méthodes computationnelles en finance
Tarification et couverture dans des modèles avec une volatilité ou un taux d’intérêt stochastique, simulation de Monte Carlo pour les équations différentielles stochastiques, résolution d’équations à dérivées partielles.
Modèles à chaîne de Markov cachée en finance
Modèles à chaîne de Markov cachée, modèles à espace d’état, techniques de filtrage et de lissage, filtre d’Hamilton, filtre de Kalman, méthodes de Monte Carlo séquentielles, algorithme EM, applications financières.
Mesure et intégration
Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.
Analyse fonctionnelle
Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.
Analyse fonctionnelle avancée
Espaces de Sobolev. Algèbres de Banach, théorème de Gelfand. Théories spectrales d’opérateurs bornés. Opérateurs non bornés, transformée de Cayley.
Systèmes dynamiques
Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications modernes.
Équations aux dérivées partielles
Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.
Analyse géométrique
Le laplacien et la théorie elliptique. La géométrie spectrale. Surfaces minimales. Applications analytiques à la géométrie riemannienne, symplectique et kahlerienne, et en physique et sciences informatiques.
Géométrie différentielle
Variétés différentiables, formes différentielles, fibrés. Partitions de l’unité. Groupes à un paramètre de difféomorphismes, dérivée et crochet de Lie. Intégration et théorème de Stokes. Cohomologie de De Rham. Éléments de géométrie riemannienne.
Géométrie riemannienne
Métriques riemanniennes. Connexions. Courbure. Transport parallèle. Géodésiques. Champs de Jacobi. Théorèmes de Hopf-Rinow et Cartan-Hadamard. Théorèmes de comparaison. Théorème de Bonnet-Myers. Laplacien. Groupes de Lie. Espaces symétriques.
Topologie différentielle
Variétés, transversalité et degré. Théorème de Sard. Éléments de la théorie de Morse. Complexe de Morse. Théorème de Hopf-Poincaré. Cobordisme. Signature. Théorème de h-cobordisme. Classes caractéristiques. Espaces de Thom, groupes de cobordisme.
Topologie algébrique
Homologie et co-homologie singulières. Fibrations, co-fibrations. Groupes d’homotopie. CW-complexes. Obstructions. Suites spectrales. Produits. Dualité de Poincaré. Théorème du point fixe de Lefschetz. Groupes unitaires et classes de Chern.
Génétique mathématique et biologie des systèmes
Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.
Mathématiques biologiques
Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.
Modélisation mathématique et applications
Processus de modélisation mathématiques avancés: simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.
Neuroscience mathématique
Analyse mathématique et simulation de systèmes neuraux (neurones, réseaux et populations) utilisant des outils de systèmes dynamiques. Procédés stochastiques, et autres techniques.
Calcul scientifique
Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Gestion de données. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.
Mécanique des fluides
Équations d’Euler. Rotation et tourbillon. Écoulements potentiels. Aérodynamique. Équations de Navier-Stokes. Écoulements très visqueux. Couches limites. Sujets spéciaux.
Méthodes numériques pour EDP
Équations paraboliques, différences finies. Convergence, stabilité. Méthodes implicites, directions alternées. Syst. hyperbol. Onde de choc, méth. amont, de Lax-Friedrichs, Lax-Wendroff, van Leer, Godunov, Roe, volumes finis.
Analyse géométrique de données
Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.
Théorie spectrale des graphes
Représentation et analyse des graphes par la décomposition spectrale des matrices dérivées de leurs topologies. Analyse harmonique sur les graphes. Applications au traitement de signal sur les graphes et à l’apprentissage profond géométrique.
Algèbre commutative
Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.
Théorie de la représentation des groupes
Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.
Théorie des groupes de Lie
Algèbre de Lie d’un groupe de Lie. Formes de Maurer-Cartan. Théorèmes de Lie. Application exponentielle, coordonnées canoniques. Sous-groupes fermés. Sous-groupes connexes par arcs. Formes de Killing et les groupes semi-simples.
Théorie algébrique des nombres
Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.
Distribution des nombres premiers
Distribution des nombres premiers. Fonction zêta de Riemann et fonctions-L de Dirichlet. Le théorème des nombres premiers, et de Bombieri-Vinogradov. La répartition des nombres premiers consécutifs.
Courbes elliptiques et formes modulaires
Groupe des points d’une courbe elliptique. Théorème de Mordell-Weil. Groupes de Selmer et de Tate-Shafarevich. Les expansions de Fourier des formes modulaires et l’idée de modularité. Applications aux équations diophantiennes.
Combinatoire additive
Théorème de Freiman-Ruzsa, transformation de Dyson, théorèmes de Van der Waerden et de Roth-Szemeredi-Gowers. Théorème de Bourgain sur les bornes de sommes exponentielles. Théorème de Green-Tao.
Probabilités
Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.
Calcul stochastique
Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.
Méthodes de statistique bayésienne
Principes de l’analyse bayésienne; loi a priori et a posteriori, inférence statistique et théorie de la décision. Méthodes computationnelles; méthodes de Monte Carlo par chaînes de Markov et méthodes variationnelles. Applications.
Méthodes non paramétriques avancées
Statistiques linéaires de rang. Problèmes de position et de dispersion. Cas d'un ou deux échantillons. Efficacité relative des tests. Régression non paramétrique : méthodes du noyau et splines de lissage. Tests de permutation et méthode bootstrap.
Méthodes asymptotiques
Notions de probabilités. Inférence non paramétrique; comportement asymptotique des moments, quantiles échantillonnaux et des statistiques d’ordre. Inférence paramétrique fréquentiste et bayésienne; consistance uniforme, normalité asymptotique.
Analyse de la variance
Cas de deux traitements. Modèle basé sur la randomisation. Théorie des formes quadratiques. Estimation et tests d’hypothèses dans les modèles linéaires. Tests de permutation du plan à un facteur. Blocs incomplets. Plans factoriels fractionnaires.
Régression
Rappels sur les modèles linéaires généralisés (inférence, tests, validation, choix de modèle). Géométrie de la régression. Étude asymptotique des estimateurs et réduction de variance. Régression robuste. Régression non paramétrique.
Analyse de données multivariées
Distributions elliptiques. Estimateurs de localisation et dispersion. Estimateur robuste. Corrélations multiple, partielle, canonique. Tests paramétriques, de permutation, du bootstrap. Classification. Analyse en composantes principales. Prévision.
Données catégorielles
Tableaux de contingence à plusieurs dimensions. Mesures d'association. Risque relatif, rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson, multinomiale, logistique cumulative. Modèles log-linéaires. Modèles graphiques.
Séries chronologiques
Techniques descriptives. Processus stationnaires. Meilleure prévision linéaire. Modèles ARMA, ARIMA et modèles saisonniers. Estimation et prévision dans les ARMA. Éléments d’analyse spectrale. Modèles ARCH et GARCH.
Inférence statistique
Principes d'inférence : estimation ponctuelle, distribution des estimateurs, test d’hypothèse, région de confiance. Approche bayésienne. Méthodes de rééchantillonnage. Estimation non paramétrique. Applications modernes de la statistique.
Bloc 71B Complément de formation et cours d'autres disciplines ou hors UdeM
Choix - Maximum 6 crédits.Bloc 71C Recherche et mémoire
Obligatoire - 29 crédits.Segment 73 - Propre à l'option Actuariat
Les crédits de l'option sont répartis de la façon suivante:
- cheminement avec mémoire (MM) : 29 crédits obligatoires attribués à la recherche, de 10 à 16 crédits à option et un maximum de 6 crédits au choix.
- cheminement avec stage (S) : 21 crédits obligatoires attribués à un stage, de 15 à 24 crédits à option et un maximum de 9 crédits au choix.
MM-Bloc 73A Cheminement avec mémoire
Option - Minimum 10 crédits, maximum 16 crédits.Finance mathématique
Structures à terme, processus stochastiques, modèles et produits dérivés de taux d'intérêt, immunisation et appariement, produits dérivés de crédit, titres adossés à des créances hypothécaires, volatilité.
Laboratoire de modélisation de données financières
Analyse et extraction d’informations à partir de données du marché, données volumineuses et à haute fréquence, techniques d’apprentissage statistique en finance, résolution de problèmes pratiques.
Méthodes computationnelles en finance
Tarification et couverture dans des modèles avec une volatilité ou un taux d’intérêt stochastique, simulation de Monte Carlo pour les équations différentielles stochastiques, résolution d’équations à dérivées partielles.
Modèles à chaîne de Markov cachée en finance
Modèles à chaîne de Markov cachée, modèles à espace d’état, techniques de filtrage et de lissage, filtre d’Hamilton, filtre de Kalman, méthodes de Monte Carlo séquentielles, algorithme EM, applications financières.
Mesure et intégration
Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.
Analyse fonctionnelle
Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.
Systèmes dynamiques
Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications modernes.
Équations aux dérivées partielles
Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.
Génétique mathématique et biologie des systèmes
Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.
Mathématiques biologiques
Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.
Modélisation mathématique et applications
Processus de modélisation mathématiques avancés: simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.
Neuroscience mathématique
Analyse mathématique et simulation de systèmes neuraux (neurones, réseaux et populations) utilisant des outils de systèmes dynamiques. Procédés stochastiques, et autres techniques.
Calcul scientifique
Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Gestion de données. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.
Analyse géométrique de données
Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.
Théorie spectrale des graphes
Représentation et analyse des graphes par la décomposition spectrale des matrices dérivées de leurs topologies. Analyse harmonique sur les graphes. Applications au traitement de signal sur les graphes et à l’apprentissage profond géométrique.
Algèbre commutative
Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.
Théorie de la représentation des groupes
Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.
Théorie algébrique des nombres
Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.
Probabilités
Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.
Calcul stochastique
Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.
Méthodes de statistique bayésienne
Principes de l’analyse bayésienne; loi a priori et a posteriori, inférence statistique et théorie de la décision. Méthodes computationnelles; méthodes de Monte Carlo par chaînes de Markov et méthodes variationnelles. Applications.
Méthodes non paramétriques avancées
Statistiques linéaires de rang. Problèmes de position et de dispersion. Cas d'un ou deux échantillons. Efficacité relative des tests. Régression non paramétrique : méthodes du noyau et splines de lissage. Tests de permutation et méthode bootstrap.
Méthodes asymptotiques
Notions de probabilités. Inférence non paramétrique; comportement asymptotique des moments, quantiles échantillonnaux et des statistiques d’ordre. Inférence paramétrique fréquentiste et bayésienne; consistance uniforme, normalité asymptotique.
Analyse de la variance
Cas de deux traitements. Modèle basé sur la randomisation. Théorie des formes quadratiques. Estimation et tests d’hypothèses dans les modèles linéaires. Tests de permutation du plan à un facteur. Blocs incomplets. Plans factoriels fractionnaires.
Régression
Rappels sur les modèles linéaires généralisés (inférence, tests, validation, choix de modèle). Géométrie de la régression. Étude asymptotique des estimateurs et réduction de variance. Régression robuste. Régression non paramétrique.
Analyse de données multivariées
Distributions elliptiques. Estimateurs de localisation et dispersion. Estimateur robuste. Corrélations multiple, partielle, canonique. Tests paramétriques, de permutation, du bootstrap. Classification. Analyse en composantes principales. Prévision.
Données catégorielles
Tableaux de contingence à plusieurs dimensions. Mesures d'association. Risque relatif, rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson, multinomiale, logistique cumulative. Modèles log-linéaires. Modèles graphiques.
Séries chronologiques
Techniques descriptives. Processus stationnaires. Meilleure prévision linéaire. Modèles ARMA, ARIMA et modèles saisonniers. Estimation et prévision dans les ARMA. Éléments d’analyse spectrale. Modèles ARCH et GARCH.
Inférence statistique
Principes d'inférence : estimation ponctuelle, distribution des estimateurs, test d’hypothèse, région de confiance. Approche bayésienne. Méthodes de rééchantillonnage. Estimation non paramétrique. Applications modernes de la statistique.
MM-Bloc 73B Complément de formation et cours d'autres disciplines ou hors UdeM
Choix - Maximum 6 crédits.MM-Bloc 73C Recherche et mémoire
Obligatoire - 29 crédits.S-Bloc 73A Cheminement avec stage
Option - minimum 15 crédits, maximum 24 crédits.Finance mathématique
Structures à terme, processus stochastiques, modèles et produits dérivés de taux d'intérêt, immunisation et appariement, produits dérivés de crédit, titres adossés à des créances hypothécaires, volatilité.
Laboratoire de modélisation de données financières
Analyse et extraction d’informations à partir de données du marché, données volumineuses et à haute fréquence, techniques d’apprentissage statistique en finance, résolution de problèmes pratiques.
Méthodes computationnelles en finance
Tarification et couverture dans des modèles avec une volatilité ou un taux d’intérêt stochastique, simulation de Monte Carlo pour les équations différentielles stochastiques, résolution d’équations à dérivées partielles.
Modèles à chaîne de Markov cachée en finance
Modèles à chaîne de Markov cachée, modèles à espace d’état, techniques de filtrage et de lissage, filtre d’Hamilton, filtre de Kalman, méthodes de Monte Carlo séquentielles, algorithme EM, applications financières.
Mesure et intégration
Ensembles mesurables, mesure de Lebesgue, théorèmes de Lusin et de Egorov, intégrale de Lebesgue, théorème de Fubini, espaces Lp, éléments de la théorie ergodique, mesure et dimension de Hausdorff, ensembles fractals.
Analyse fonctionnelle
Espaces d’Hilbert, de Banach, théorèmes de Hahn-Banach, de Banach-Steinhaus et du graphe fermé, topologies faibles, espaces réflexifs, décomposition spectrale des opérateurs auto-adjoints compacts.
Systèmes dynamiques
Flots discrets et continus. Équations différentielles non linéaires, techniques classiques d’analyse de dynamique, existence et stabilité de solutions, variétés invariantes, bifurcations, formes normales, systèmes chaotiques. Applications modernes.
Équations aux dérivées partielles
Équations des ondes et de la chaleur, problème de Sturm-Liouville, théorie des distributions, espaces de Sobolev, fonctions harmoniques, équations elliptiques, éléments de la théorie spectrale.
Génétique mathématique et biologie des systèmes
Processus de branchement : modèles de Wright-Fisher, de Moran. Modèles à une infinité d’allèles, de sites. Facteurs d’évolution: sélection, mutation, migration, recombinaison, apparentement. Reconstruction et inférence de réseaux génétiques.
Mathématiques biologiques
Examen de modèles fondamentaux utilisés en biologie mathématique et de leur analyse utilisant des outils modernes de calcul scientifique. Systèmes dynamiques discrets et continus, procédés stochastiques, modèles statistiques et simulation numérique.
Modélisation mathématique et applications
Processus de modélisation mathématiques avancés: simulations, estimation de paramètres, interprétation. Utilisation des mathématiques dans un milieu multidisciplinaire (p. ex. oncologie, neurosciences, génétique). Étude de cas et projets appliqués.
Neuroscience mathématique
Analyse mathématique et simulation de systèmes neuraux (neurones, réseaux et populations) utilisant des outils de systèmes dynamiques. Procédés stochastiques, et autres techniques.
Calcul scientifique
Virgule flottante. ÉDOs. Modélisation et simulations. Méthodes directes et itératives pour la résolution de systèmes linéaires et non-linéaires. Gestion de données. Valeurs propres. ÉDPs elliptiques et paraboliques. Équation de Black-Scholes.
Analyse géométrique de données
Formulation et modélisation analytique des géométries intrinsèques de données. Algorithmes pour les construire et les utiliser en apprentissage automatique. Applications : classification, regroupement et réduction de la dimensionnalité.
Théorie spectrale des graphes
Représentation et analyse des graphes par la décomposition spectrale des matrices dérivées de leurs topologies. Analyse harmonique sur les graphes. Applications au traitement de signal sur les graphes et à l’apprentissage profond géométrique.
Algèbre commutative
Anneaux commutatifs, idéaux premiers, rudiments de géométrie algébrique, Nullstellensatz de Hilbert, localisation, complétion, théorie de la dimension.
Théorie de la représentation des groupes
Représentations des groupes, algèbre d’un groupe fini, table de caractères, représentations des groupes symétriques, groupes de Lie, algèbre de Lie, représentations des groupes classiques.
Théorie algébrique des nombres
Nombres et entiers algébriques. Unités. Norme, trace, discriminant et ramification. Base intégrale. Corps quadratiques, cyclotomiques. Groupes de classes. Décomposition en idéaux premiers. Équations diophantiennes.
Probabilités
Espace de probabilité, variables aléatoires, indépendance, espérance mathématique, modes de convergence, lois des grands nombres, théorème central limite, espérance conditionnelle et martingales. Introduction au mouvement brownien.
Calcul stochastique
Mouvement brownien, intégrale stochastique, formule d’Itô, équations différentielles stochastiques, théorèmes de représentation, théorème de Girsanov. Formule de Black et Scholes.
Méthodes non paramétriques avancées
Statistiques linéaires de rang. Problèmes de position et de dispersion. Cas d'un ou deux échantillons. Efficacité relative des tests. Régression non paramétrique : méthodes du noyau et splines de lissage. Tests de permutation et méthode bootstrap.
Méthodes asymptotiques
Notions de probabilités. Inférence non paramétrique; comportement asymptotique des moments, quantiles échantillonnaux et des statistiques d’ordre. Inférence paramétrique fréquentiste et bayésienne; consistance uniforme, normalité asymptotique.
Analyse de la variance
Cas de deux traitements. Modèle basé sur la randomisation. Théorie des formes quadratiques. Estimation et tests d’hypothèses dans les modèles linéaires. Tests de permutation du plan à un facteur. Blocs incomplets. Plans factoriels fractionnaires.
Régression
Rappels sur les modèles linéaires généralisés (inférence, tests, validation, choix de modèle). Géométrie de la régression. Étude asymptotique des estimateurs et réduction de variance. Régression robuste. Régression non paramétrique.
Analyse de données multivariées
Distributions elliptiques. Estimateurs de localisation et dispersion. Estimateur robuste. Corrélations multiple, partielle, canonique. Tests paramétriques, de permutation, du bootstrap. Classification. Analyse en composantes principales. Prévision.
Données catégorielles
Tableaux de contingence à plusieurs dimensions. Mesures d'association. Risque relatif, rapport de cote. Tests exacts et asymptotiques. Régression logistique, de Poisson, multinomiale, logistique cumulative. Modèles log-linéaires. Modèles graphiques.
Séries chronologiques
Techniques descriptives. Processus stationnaires. Meilleure prévision linéaire. Modèles ARMA, ARIMA et modèles saisonniers. Estimation et prévision dans les ARMA. Éléments d’analyse spectrale. Modèles ARCH et GARCH.